DSpace

Future University Hakodate Academic Archive >
研究者 >
複雑系知能学科 >
斉藤 朝輝 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10445/6017

タイトル: Dynamical Singularities in Online Learning of Recurrent Neural Networks
著者: Saito, Asaki
Taiji, Makoto
Ikegami, Takashi
アブストラクト: We numerically and theoretically demonstrate various singularities, as a dynamical system, of a simple online learning system of a recurrent neural network (RNN) where RNN performs the one-step prediction of a time series generated by a one-dimensional map. More specifically, we show first through numerical simulations that the learning system exhibits singular behaviors (“neutral behaviors”) different from ordinary chaos, such as almost zero finite-time Lyapunov exponents, as well as inaccessibility and power-law decay of the distribution of learning times (transient times). Also, we show through linear stability analysis that, as a dynamical system, the learning system is represented by a singular map whose Jacobian matrix has eigenvalue unity in the whole phase space. In particular, we state that the singularity as a dynamical system (shown by the second method) provides a basic reason for the neutral behaviors (shown by the first method) exhibited by the learning system.
研究業績種別: 国際会議/International Conference
資料種別: Conference Paper
発表雑誌名,発表学会名など: Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence (FOCI 2007)
開始ページ: 174
終了ページ: 179
年月日: 2007年
出現コレクション:斉藤 朝輝

ファイルダウンロード:

ファイル 記述 サイズフォーマット
saito_2007_01_IEEES001P026.pdf3.36 MBAdobe PDF見る/開く

このアーカイブに登録されているコンテンツはすべて著作権により保護されています。
著作権を遵守の上、ご利用ください。

 

Copyright © 2010-2012 FUTURE UNIVERSITY HAKODATE.
Powered by DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard