Future University Hakodate Academic Archive >
Faculty and Students >
Dept. of Complex and Intelligent Systems >
Nakagaki Toshiyuki >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10445/4404

Title: Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold
Authors: Yamada, Hiroyasu
Nakagaki, Toshiyuki
Baker, Ruth E.
Maini, Philip K.
Abstract: In the large amoeboid organism Physarum, biochemical oscillators are spatially distributed throughout the organism and their collective motion exhibits phase waves, which carry physiological signals. The basic nature of this wave behaviour is not well-understood because, to date, an important effect has been neglected, namely, the shuttle streaming of protoplasmwhich accompanies the biochemical rhythms. Here we study the effects of self-consistent flow on the wave behaviour of oscillatory reaction-diffusion models proposed for the Physarum plasmodium, by means of numerical simulation for the dispersion relation and weakly nonlinear analysis for derivation of the phase equation. We conclude that the flow term is able to increase the speed of phase waves (similar to elongation of wave length). We compare the theoretical consequences with real waves observed in the organism and also point out the physiological roles of these effects on control mechanisms of intracellular communication.
Research Achievement Classification: 原著論文/Original Paper
Type: Journal Article
Peer Review: あり/yes
Solo/Joint Author(s): 共著/joint
Published journal or presented
academic conference: 
Journal of Mathematical Biology
Volume: 54
Spage: 745
Epage: 760
Date: 2007
Appears in Collections:Nakagaki Toshiyuki

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2010  Duraspace